Food Safety Key Issues and Challenges:

International, Including SAARC

Nimish Shah Member, Scientific Advisory Committee on Food Safety, ILSI-India

Outline

Introduction

Key Risk Areas

 Risk-based approach for food safety management

 Illustrations

Focus for SAARC

Global Foods in Local Markets

Global Travel

Novel Food processing

Out of Home Meals

Global Warming

Intensive Farming & Adulteration

Zoonoses – New patterns

Others

Lower water & Land availability for cultivation

- Rising Food demand and costs
- Shrinking fishery resources
- Many other changes that are

- Rapid
- Widespread
- Affecting all
 - The world
 - Asia
 - SAARC
 - You and Me

& Have a bearing on FOOD SAFETY

How changes may influence outcomes – Some examples

- Irrigation water being a source of pathogens
 - Polluted/ Recycled waters may enhance the risk
- Pathogens survive in environments and can potentially contaminate foods
 - Global warming higher temperatures increase survival opportunities and infective potential
- Consumer interest in exotic foods
 - Exposure to newer microbiological and toxicological risks
- Increasing travel and eating out
 - Global transmission of disease Pandemics
 - SARS/ Bird Flu

Nothing is absolutely safe

Whether a material will cause any adverse impact depends a number of factors

> Risk Assessment

Risk Assessment

Scientific evaluation of known or potential adverse effects resulting from human exposure to foodborne hazards.

It consists of

- Hazard Identification
- Hazard characterization
- Exposure assessment
- Risk characterization

Risk Management

Identify & Characterize hazards

Epidemiology Toxicology/ biology Generate/ predictions

man what biological, chemical and physical agents are ling with and with which foods is associated? what illness(eg é caused, associated with which dose and for which p

Characterize risks

how likely it is that an individuz Documented biological hazard and what

transparent Severity Exposure **Susceptibility**

0 opulation will be exposed to a chemical/ 1 of the is likely to be ingested

Integrate the resy

gning probabilities and uncertainties

Manage riv

Control measures (safety by design) Regulation Communication

Quantifying Risks - Modeling

Chemical (Tox.) v/s Microbiological

Chemicals:

- Levels unchanged
- May not be destroyed cooking
- Often homogeneous distribution
- Not transmitted
- Consumer has less responsibility for safety
- Mostly chronic exposure

Microorganisms:

- Can change in concentration
- Many destroyed by cooking
- Heterogeneous distribution
- Person-to-person transmission important
- Role of the consumer in ensuring safety is essential
- Mostly acute

Toxicity Endpoints

Toxicology studies how external chemicals interact with your body's chemicals to cause damage or illness

- Carcinogenicity
- Mutations
- Altered immune function
 - Food Allergy
- Teratogenicity
- Altered reproductive function
- Neuro-behavioral toxicity
- Organ-specific effects
- Ecological effects (wildlife, environmental persistence)

Appropriate Hazard Data

- Choose most sensitive endpoint for effects
- 1. sub-chronic study,
- 2. reproduction/development study,
- 3. neurotoxicity,
- 4. lifetime exposure (thresholded tumours)
- Determine the NOEL (no observed effect level) or the NOAEL (no observed adverse effect level)

Input to risk-based decision making

No-observable Adverse Effect Levels (NOAELs)

	90 day rat NOAEL (mg/kg/day)	90 day dog NOAEL (mg/kg/day)	1-year dog NOAEL (mg/kg/day)	2-year rat NOAEL (mg/kg/day)	Lowest NOAEL (mg/kg/day)
2,4 D	15	1	1	5	1
Acetochlor	80	10	2	10	2
Atrazine	1	6	5	3.5	1
Carbaryl	125	1	3.1	10	1

Health Impact Categorisation Risk Prioritization: Health Impact in the population

Microbiological Risks

A systems approach to food safety.

DRIVERS	SOURCES	PATHWAYS			OUTCOMES
	Pathogens	Farms	Processing/distribution	Preparation/Consumption	Public health
Economy					
Globalization	Reduced geographical barriers to spread (of new variants)	Inadequate sanitation: higher pathogen loads Global sourcing Intensified contact structures	Long and complex supply chains Varying hygiene levels		Increased risk
Food price/income level		Less profit margins; decrea food safety	ased investment in	Preference for cheaper alternatives (e.g. less meat and butter; discounters; home brands)	Risk not clear
Science and technology a	nd industry				
Minimal processing	Adaptation	•	Less kill steps		Increased risk if not well controlled
Innovation		New food animal species	Step change food innovation Smart packaging Bacteriophages	Smart labels	Risk not clear
Laboratory methods	Discovery of new pathogens or variants Omics approaches				Increased observed risk

More Natural Minimally Preserved Sustainability: Lower Processing Microbial Resilience Food-Microbe Interaction

Emerging Pathogens - Common Features

- Many (75%) have an animal reservoir
- Many can infect multiple hosts
- Do not often cause disease in host animals
- Rapid spread, on a global basis
- Many have <u>antibiotic resistance</u> capabilities
- Some have low infectious dose
- Sharing of virulence genes
- Some cause severe illness
- We don't have much knowledge about ecology and methods for detection/enumeration and control

Why have new food-borne diseases emerged ?

Rank	Driver
1	Changes in land use or agricultural practices
2	Changes in human demographics and society
3	Poor population health (e.g. HIV, malnutrition)
4	Hospitals and medical procedures
5	Pathogen evolution
6	Contamination of food sources or water supplies
7	International travel
8	Failure of public health programmes
9	International trade
10	Climate change

Woolhouse and Gowtage-Sequeria, 2005, Emerg. Infect. Dis., 11, 1842-1847

What should we be worried about ?

Helminths - complex, with complex life cycles, long generation times, not extremely virulent/pathogenic

Viruses - difficult to prevent spread, high mutation rates, generation times short, quicker to evolve/adapt, RNA viruses more easily transmissible across species/orders

Bacteria - somewhere in between

All human pathogens (1415)

Emerging human pathogens (175)

Cleaveland et al, Phil, Trans. R. Soc Lond. B 2001, 356, 991-995

Salmonella

Easy to kill
 Thermal*
 Easily inactivated

Bacteria	Time (min.)	Temp ^o C
Salmonella	4.3	<u> </u>

*Thermal death time is a concept used to determine how long it takes to kill a specific <u>bacteria</u> at a specific <u>temperature</u>.

Salmonella

 Can survive for months to years in low moisture foods

nonfat dry milk, peanut butter, chocolate

 Small numbers of this bacterium can produce illness when consumed in high-fat foods

chocolate (< 1 Salmonella/g), peanut butter, cheese

Hypotheses:

- 1) Entrapment of Salmonella within hydrophobic lipid micelles protection against the bactericidal action of gastric acidity
- 2) Rapid emptying of fat based gastric contents.

Thermal Inactivation of *Salmonella* in Peanut Butter^a

Internal				
Temperature	Mea	Mean maximum time (min)		
(C / F)	3-log reduction	5-log reduction	7-log reduction	
71 / 160	107	402	965	
77 / 170	62	197	423	
83 / 181	33	110	227	
90 / 194	21	49	120	

^a Commercial, creamy-style peanut butter; $a_w = 0.45$, pH = 5.1

Ma et al., J. Food Protect. July 2009

Bacteria	Time (min.)	Temp ^o C
Salmonella	4.3	60

Equivalence in Food Safety Management

New Technologies for food processing

- Ultrasonic waves
- Pulse field
- High Pressure
- Radio Frequencies

Equivalent level of risk reduction needs to be ensured

SAARC – Reported Gaps

Strengthen health surveillance systems

Poor assessment of health issues linked to foods

Strengthen to conduct detailed risk assessment

- lack of exposure assessment data
- laboratory infrastructure
- know-how to analyze a wide range of contaminants
- Focus on easily measurable target
 - e.g. Bacterial pathogens. What about viruses/ other types of pathogens in foods?

Adequacy of in-house controls

- Hazard Analysis and Critical Control Points (HACCP) system
 - science-based, systematic, Food Safety management system

Establishment of

- Traceability and recall systems
- Understanding of hazard analysis
- Pest control and proofing
- Water treatment system maintenance
- Staff hygiene facilities

How Do We Go About

- Recognize Food-related illnesses have a significant impact not only on health but also on development
- Put food safety high on national priorities E.g. Establishment of FSSAI in India
- Identify critical gaps in technical expertise
- Make available Financial resources and infrastructure to address gaps and implement food safety policies
- Support the development of <u>risk-based</u>, <u>sustainable</u>, <u>integrated</u> food safety systems
- Devise science-based measures along the entire food production chain
 - prevent exposure to unacceptable levels of microbiological agents and chemicals in food
- Assess and manage risks and communicate information, in cooperation with other sectors and partners.

- Utilize & Exploit excellent intellectual resources already available
 - Knowledge on behavior of microorganisms in foods
 - Toxicological endpoints
- Interdisciplinary network of experts
 - Mathematics/ Microbiology/ Toxicology/ Epidemiology + +
 - Country/ Regional
- R&D to generate new knowledge enabling scientific risk assessment
 - E.g. Ethnic foods
 - Hazards 'creeping in' on account of evolving supply chain

- Food MicroModel http://www.leatherheadfood.com
- Sym'previus <u>http://www.symprevius.net/</u>
- Freeware packages:
 - Pathogen Modeling Program (PMP) <u>http://www.arserrc.gov/mfs/pathogen.htm</u>
 - Growth Predictor (GP)
 <u>http://www.ifr.ac.uk/Safety/GrowthPredictor/</u>
 - Seafood Spoilage & Safety Predictor (SSSP) <u>http://www.dfu.min.dk/micro/sssp/</u>

