Human Gut Microbiota and Health

Dr. R. Hemalatha, MD, Scientist ‘D’

Dr. B. Sesikeran, MD, FAMS
Director
National Institute of Nutrition
(Indian Council of Medical Research)
Hyderabad – 500 604
INDIA
Gut Bacteria

- At birth, digestive tract of humans is sterile.
- Colonised by microbes within the first few days of life.
- At first, predominantly bifidobacteria (breast fed infants).
- With the introduction of other foods, a diverse microbial population develops in the gastrointestinal tract.
MAIN FUNCTIONS OF GUT FLORA

- Metabolic & Trophic functions
- Immunomodulatory
- Protective barrier function & Anti-diarrheal
- Antidiabetic ?
- Anticarcinogenic ?
- Hypocholesterolemic ?
- Obesity, metabolic syndrome, cancer?
METABOLIC FUNCTIONS

Fermentation

- Saccharolytic fermentation
 - SCFA
 - Energy for colonocytes
 - Carbohydrate and lipid metabolism
 - Control of the colonic pH
 - Maintain integrity of colonic mucosa
 - Intestinal motility and nutrient absorption.

- Proteolytic fermentation
 - Phenolic compounds
SACCHAROLYTIC FERMENTATION

Short chain fatty acids

- Acetic acid - used by muscle
- Butyric acid – absorption of fluids, stimulation of proliferation in normal cells
- Propionic acid – decreases production of inflammatory mediators & helps ATP production in liver
- Succinic acid – break-down of acetaldehyde (generates NAD), anti inflammatory action
- SCFA induce lipogenesis
Phytochemicals undergo microbial fermentation – polyphenols, phenolic acids etc.

- anti-inflammatory
- anti-oxidative
- anti-aging
- cancer preventive
NUTRITIONAL EFFECTS OF COMMENSAL BACTERIA

1. Recycling: non absorbed nutrients, intestinal secretions, mucus.
 (It could account for 10% of total daily energy)

2. Favouring mineral absorption
TROPHIC FUNCTIONS

- Butyrate will affect proliferation in the small intestines and colon.
- Butyrate inhibits cell proliferation and stimulates cells differentiation in cell lines of neoplastic origin.
- Butyrate promotes reversion of cells from neoplastic to non-neoplastic phenotypes.
Commensal Bacteria Prevent Infection

- Competition for attachment sites
- Competition for nutrient availability
- Growth inhibition by productions of antimicrobial substances
- Influence on mucosal barrier
 - mucus production
 - epithelial growth
- Influence on immune function
A

- **Duodenum**: $10^7 - 10^9$ cfu/ml
- **Stomach**: $10^7 - 10^8$ cfu/ml
- **Colon**: $10^{11} - 10^{12}$ cfu/ml
- **Jejunum/Ileum**: $10^7 - 10^8$ cfu/ml

Anaerobic genera
- Bifidobacterium
- Clostridium
- Bacteroides
- Eubacterium

Aerobic genera
- Escherichia
- Enterococcus
- Streptococcus
- Klebsiella

B

- **Protective functions**
 - Pathogen displacement
 - Nutrient competition
 - Receptor competition
 - Production of anti-microbial factors e.g., bacteriocins, lactic acids

- **Structural functions**
 - Barrier fortification
 - Induction of IgA
 - Apical tightening of tight junctions
 - Immune system development

- **Metabolic functions**
 - Control IEC differentiation and proliferation
 - Metabolize dietary carcinogens
 - Synthesize vitamins e.g., biotin, folate
 - Ferment non-digestible dietary residue and endogenous epithelial-derived mucus
 - Ion absorption
 - Salvage of energy

- **Commensal bacteria**
- **IgA**
- **Short-chain fatty acids**
- **Mg^{2+}, Ca^{2+}, Fe^{2+}**
- **Vitamin K, Biotin, Folate**
Mucosal immune system

1st line of Defense - Mucosal surface integrity

IgA
Intestinal permeability
Glycosaminoglycans (mucus!)
Production of IgA at mucosal surface

2nd Line of Defense
Cell-mediated Immunity –
TH1 Activation
Delayed HyperSensitivity
Macrophage/Phagocytosis
Humoral Immunity –
TH2 Activation
Allergic Response
Antibody Formation
Gut Microbiota and Mucosal Immune Function

1. Commensal microbes have regulatory effects on mucosal immune response.
2. Host immune response to commensals is species/strain specific.
3. Commensal bacteria have a developmental role in the priming of immune response.

Modulation of the immune response by commensal bacteria

- Stimulation of mucosal immunity
 - Better oral vaccine responses
 - Control infections
- Suppression of mucosal immunity
 - Reduce allergy
 - Reduce inflammation
Gut Microbiota and Mucosal Immune Regulation

Oral Tolerance:
- Bacteria can influence tolerance of Gut immune system to Antigens once ingested.
- This can ↓ the hyperactive immune system in allergies, autoimmune disorders, etc.

Preventing Allergy:
- Composition of gut flora varies in patients with/without allergies.
- Helpful gut flora stimulate the immune system and ‘train’ it to respond properly to Ag.
- Lack of these bacteria in early life → inadequately trained immune system which overreacts with the Ag.

In allergy: ↓Bacteroides, Bifidobacteria
↑S. aureus, C. difficile
Preventing rotaviral and Antibiotic associated diarrhoea (AAD):

- Antibiotic can cause AAD by
 1. irritating the bowel directly
 2. changing gut flora levels
 3. allowing pathogenic bacteria to grow
 4. or by increasing antibiotic resistant organisms.

- The mechanism of diarrhoea can be:
 1. Inadequate fermentation of CHO or metabolism of bile acids
 2. CHO not broken down, absorb much water causing diarrhoea
 3. - Lack of SCFA can also cause diarrhoea
Potential Mechanisms of anti-neoplastic action

- ↓ Angiogenesis
- ↑ Apoptosis
- ↓ Proliferation
- ↑ Immunosurveillance
- ↓ Inflammation

Gut bacteria and Lipid lowering effect:

- Hyperlipidemic subjects - effects are primarily due to reductions in cholesterol.
- Normal lipidemic subjects - effects on serum triglycerides are dominant.

Gut bacteria are different in obese and non-obese

- Firmicutes linked with obesity.
- Bifidobacterium and bacteroidetes – normals
Gut Microbes and Obesity

- Young, conventionally reared mice have a higher body fat content (42%) than germ free strains, though they consumed 29% lesser food.

- Microbiota were transferred to these germ free mice, then these mice experienced a 60% increase in body fat in 2 wks without any change in food consumption or energy expenditure.

- Obese mice- More end products of fermentation, and fewer calories in feces led to speculations that gut microbiota in mice help harvest additional calories from ingested food.

- In children from birth to age 7- analyzed stool samples collected at 6 monthly intervals. differences in gut flora precede overweight-obesity
Do Microbial proportions matter?

- Bacteroidetes constituted only 5% of the obese people’s gut flora, but 20% in the lean subjects’.

- After a year of either a carbohydrate- or fat-restricted diet, the obese lost weight and the ratio of Firmicutes to Bacteroidetes shifted towards that of their lean counterparts. In the end, Bacteroidetes made up about 15% of their gut flora.

- These changes are irrespective of diet and were proportional to the amount of wt lost.
Microbial Proportions Matter

BMI

Lactobacilli
Bifidobacteria
Enterobacilli

Firmicutes
OBESITY -> SATURATED- FAT

- Decreased Beneficial bacteria
- Increased Bad bacteria
- Pathogenic bacteria
 - ↑ Sphingomyelinases → ↓ Ceramide
 - Intestinal permeability ↑
 - Plasma LPS i.e. metabolic endotoxemia
 - Body weight and fat mass development ↑
 - Macrophages infiltration ↑
 - Oxidative stress ↑
 - Pro-inflammatory cytokines ↑
 - Glucose intolerance ↑
 - Diabetes ↑
High fat feeding induced Metabolic endotoxemia and changed intestinal bacteria

Patrice D. Cani et al Diabetes, 57, 2008

FIG. 1. High-fat feeding increased endotoxemia and changed intestinal microbiota. A: Plasma LPS concentration (EU/ml) was assessed every 4 h throughout the day in normal diet (CT; n = 9) (■) and 4-week high-fat–fed (HF; n = 9) (○) mice. B: Groups of bacteria in the caecal content of mice fed the normal diet (CT; n = 8) or the high-fat diet (HF; n = 8) for 4 weeks. Bacterial numbers are expressed as log10 (bacterial cells per gram caecal content wet weight). *P < 0.05 vs. CT. C: Delta plasma LPS concentration in (EU/ml) in mice before and 30 min after an oral administration of LPS diluted in corn oil (n = 6) (oil-LPS) or in water (n = 6) (H2O-LPS) or an administration of oil alone (n = 6) (oil). *P < 0.05 vs. H2O-LPS. Data are means ± SE.
Chronic experimental metabolic endotoxemia induces obesity, diabetes and insulin resistance.

FIG. 2. Chronic experimental metabolic endotoxemia induces obesity and diabetes. **A:** Plasma endotoxin concentration (EU/ml) in WT mice infused with saline (CT; n = 18) or LPS (n = 18) for 4 weeks using subcutaneous osmotic pumps and compared with mice fed a high-fat diet for 4 weeks (HF; n = 24). **B:** Plasma glucose (mmol/l) following an oral glucose load (3 g/kg) in control (CT; n = 24), LPS (n = 13), or high-fat diet (HF; n = 24) mice. The inset represents the area under curve for each group. *P < 0.05 vs. CT; §LPS vs. CT; ¶HF vs. LPS. **C:** Plasma insulin (pmol/l) concentrations 30 min before (−30) and 15 min after (15) an oral glucose load in control (CT; n = 24), LPS (n = 13), or high-fat diet–fed (HF; n = 24) mice. **D:** Hepatic glucose production and whole-body glucose turnover rates (mg · kg⁻¹ · min⁻¹) in control (CT; n = 5), LPS (n = 5), or high-fat diet–fed (HF; n = 5) mice. **E:** Body weight (g) before (day 0) and after a 28-day treatment period (day 28) and body weight gain (Δ) in
CD14 mice are protected against LPS induced inflammation

• To demonstrate the causal link between LPS and obesity/Diabetes, CD14 mutant mice were studied.

![Graph showing mRNA levels of IL-6, PAI-1, and IL-1 in WT and CD14 mice after LPS stimulation.](image)

FIG. 4. CD14 mutant mice are protected against LPS-induced inflammation. mRNA concentrations of IL-6, PAI-1, and IL-1 in adipose tissue 3 h after a saline (control [CT]; n = 6) or an LPS (n = 6) infusion in WT (A) and CD14 mutant (B) mice. *P < 0.05 vs. CT; §P < 0.05 vs. WT. C: Representative Western blot analysis of p-NFκB and p-IKK-a in the liver of mice from the same experiment. Protein Ct corresponds to a loading control of major protein, which cross-reacts nonspecifically with the anti-p-IKK-a antibody.
CD14 null mutation prevents the effect of LPS induced obesity and diabetes

- Body wt gain, visceral and subcutaneous adipose depot wts were increased in WT (Wild type), but unchanged in CD14 mutants (5a,b)
- Fasted and glucose stimulated glycaemias were augmented in WT-LPS compared to WT-C (5c)
- The area under the curve was inc in response to LPS infusion in WT only (5c inset)
- Plasma insulin conc were similar in basal and glucose stimulated conditions for all groups (5d)
- Chr LPS infusions increased liver wt of WT mice only (5e)
- Triglycerides were increased by 30% in WT-LPS mice’s liver only, but were not statistically significant (5f)

FIG. 5. The CD14 null mutation prevents the effect of LPS-induced obesity and diabetes. A: Body weight gain (g) in WT mice infused with saline (WT-CT; n = 13) or LPS (WT-LPS; n = 14) and CD14 mutant mice infused with saline (CD14-CT; n = 13) or LPS (CD14-LPS; n = 12) for 4 weeks using subcutaneous osmotic pumps. B: Visceral and subcutaneous adipose tissue weight (percentage of body weight) in WT-CT (n = 13) (), WT-LPS (n = 14) (), CD14-CT (n = 13) (), and CD14-LPS (n = 12) () mice. C: Plasma glucose concentration (mmol/L) following an intraperitoneal glucose load (1 g/kg) in WT-CT (n = 6) (), WT-LPS (n = 6) (), CD14-CT (n = 6) (), and CD14-LPS (n = 6) () mice. The inset represents the area under curve of the same groups. D: Plasma insulin (pmol/L) concentration 30 min before (−30) and 30 min after (30) intraperitoneal glucose administration in WT-CT (n = 6) (), WT-LPS (n = 6) (), CD14-CT (n = 5) (), and CD14-LPS (n = 6) () mice. E: Liver weight (percentage of body weight) in WT-CT (n = 13), WT-LPS (n = 13), CD14-CT (n = 12), and CD14-LPS (n = 13) mice. F: Liver triglycerides (µmol/liver) in WT-CT (n = 12), WT-LPS (n = 9), CD14-CT (n = 5), and CD14-LPS (n = 6) mice. Data are means ± SE. Data with different superscript letters are significantly different at P < 0.05, according to the post hoc ANOVA statistical analysis.
Bifidobacterium Decreases Endotoxemia (LPS)

Multiple correlation analysis between major Gram +ve and Gram-ve bacteria in the caecal contents of mice was done to identify whether one specific group of gut bacteria was involved in the determination of endotoxemia.
Bifidobacterium Decreases Blood Glucose and Insulin Levels

- Fasted insulin and glycaemic response were positively correlated with plasma endotoxin levels (4a,b).

- And negatively correlated with Bifidobacteria (4c,d).
Bifidobacterium associated with low body weight and visceral fat

- Body weight and visceral fat mass correlated positively with plasma endotoxin levels (5a,b)

- Correlated negatively with Bifidobacteria. (5c,d)
Markers of metabolic syndrome

- Glucose Intolerance
- Fasted Insulinemia
- Inflammatory Markers
- Adipose Tissue &
- Body Weight Gain

Increase with Endotoxemia
Decrease with Bifidobacteria
LPS leaks through epithelial barrier!

- Gut microbiome
- Probiotics
- Prebiotics
- Infection
- High fat diet
- Env./stress
- Other bioactives

Immune/inflammatory response

Defence

Imbalance

IBS, IBD, CD etc.

NF-κB

TLR'4

Adipocytes

Fatty liver

Systemic inflammation & MS

LPS/endotoxaemia?

Atherosclerosis

Ins.res.

T2DM

CVD etc.

29
Specific Increase of Bifidobacteria by Prebiotics

![Graphs showing the specific increase of Bifidobacteria by prebiotics.](image-url)
Prebiotics Control High Fat Diet Induced Inflammation

- IL-1α, IL-1β, and IL-6 were increased in HF mice compared to control.
- HF-OFS had significantly normalized IL-1α and IL-6 cytokines plasma levels compared with HF and decreased IL-1β.
- HF–Cell mice showed intermediary levels.

C- open bars
HF-closed bars
HF-Cell- hatched bars
HF-OFS- grey bars
Prebiotics Improve Glucose Tolerance and Restore Glucose Induced Insulin Secretion

- HF mice showed strong glucose intolerance (3a,b).
- Fasted insulinemia was significantly increased in HF and HF-Cell mice compared to control (3c).
- Insulin secretion following glucose load was almost absent in HF and HF-Cell mice (3c,d). In contrast, HF-OF mice showed normal fasting plasma insulin levels and restored glucose-insulin secretion.

3a: C - closed squares
HF - closed circles
HF-Cell - open squares
HF-OF - open circles
Food Sources of Prebiotics

- Chicory
- Oatmeal
- Barley
- Whole grains
- Onions, garlic
- Greens (spinach, mustard green)
- Berries, banana, other fruits
- Legumes (lentils, kidney beans, chickpeas)
Can Bifidobacteria help prevent development of metabolic syndrome?

Selective Increases of Bifidobacteria in Gut Microflora Improve High-Fat-Diet-Induced Diabetes in Mice Through a Mechanism Associated with Endotoxaemia

Cani PD et al. 2007, Diabetologia,

Modifying the gut microbiota in favour of Bifidobacteria may prevent deleterious effects of high-fat-diet-induced metabolic diseases...
THE FUTURE

- Studies on gut microbiota interactions with metabolic phenotypes (so-called functional metagenomics)

- Understanding of microbiota diversity on a population level and across various cultural and ethnic group.

- To standardize the microbiota analysis methodology, sample collection, storage, analysis methods.

- Correlating microbiota composition with disease risk, require large prospective epidemiological studies.
THANK YOU